USE OF DOUBLE INDICATORS IN NEUTRALISATION

Section - 4

For studying the titrations of alkali mixtures such as NaOH and Na_2CO_3 ; Na_2CO_3 and $NaHCO_3$, two indicators **phenolphthalein** and **methyl orange** are used.

- ➤ Phenolphthalein is a weak organic acid and gives end point between pH range of 8 10, while methyl orange, a weak base gives end point between pH range of 3 4.4.
- When methyl orange is used as an indicator for studying the neutralisation titrations for above mixtures, it indicates complete neutralisation for these, i.e., at the end point (colour change for indicator) the above mixtures are fully neutralised.
- > When phenolphthalein is used as an indicator for the above mixtures :
 - (a) it indicates complete neutralisation of NaOH (or KOH, i.e. strong alkali).
 - (b) it indicates half neutralisation of Na₂CO₃ (at the end point NaHCO₃ is formed).

So, in an analysis of such alkali mixtures, both the indicators are used:

> one after the other in the same volumetric mixture

or

two indicators are used separately in two different titrations.

FOR EXAMPLE:

- 1. In the Neutralisation mixture of NaOH and Na₂CO₃:
- (a) Use of methyl orange:

NaOH and Na₂CO₃, both are fully neutralised. i.e.

milliequivalent (meq or gmeq) of acid used = meq of NaOH + meq of Na₂CO₃

(b) Use of Phenolphthalein:

NaOH is fully neutralised and Na₂CO₃ is half neutralised

milliequivalent (meq. or gm.eq) of acid used = meq of NaOH + $\frac{1}{2}$ meq of Na₂CO₃

- 2. In the Neutralisation mixture of NaHCO₃ and Na₂CO₃:
 - (a) Use of Methyl Orange:

NaHCO₃ and Na₂CO₃, both are fully neutralised. i.e.

milliequivalent (meq or gmeq) of acid used = meq of NaHCO₃ + meq of Na₂CO₃

(b) Use of Phenolphthalein:

Na₂CO₃ is half neutralised and NaHCO₃ is **not** neutralised at all.

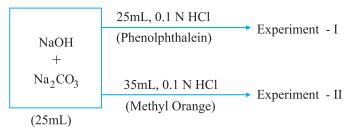

milliquivalent (meq or gmeq) of acid used = $\frac{1}{2}$ meq of Na₂CO₃

Illustration - 24 A solution of NaOH and Na₂CO₃ is prepared. 25 mL of this solution required for neutralisation:

- (a) 25.0 mL of 0.10 N HCl when phenolphthalein is used as indicator.
- (b) 35.0 mL of 0.10 N HCl when methyl orange is used as indicator.

Find the strength of NaOH and Na,CO3.

Solution:

Let mmoles of NaOH be x and that of Na₂CO₃ be y in 25ml

$$\Rightarrow \qquad 3.5 = x + 2y \qquad \qquad \dots \text{(ii)}$$

Experiment - I:

Meq. of Acid = Meq. of Base (For complete neutralisation)

$$25 \times 0.1 = 1 \times x + 2 \times y \times \frac{1}{2}$$

 $[meq = n-factor \times mmoles]$

[Note: Na₂CO₃ is half neutralised with phenolphthalein as indicator]

$$\Rightarrow$$
 2.5 = $x + y$...(i)

Experiment – II:

Meq. of Acids = Meq. of Base (For complete neutralization)

$$35 \times 0.1 = 1 \times x + 2 \times y$$

Solving(i) and(ii), we get: y = 1 and x = 1.5

$$x = \frac{g_{\text{NaOH}}}{M_{\text{NaOH}}} \times 1000 \implies \frac{g_{\text{NaOH}}}{(in \ 25 \ m\ell)} = \frac{1.5 \times 40}{1000} = 0.06 \ gm$$

$$y = \frac{g_{Na_2CO_3}}{M_{Na_2CO_3}} \times 1000 \implies g_{Na_2CO_3} = \frac{1 \times 106}{1000} 0.106 \text{ gm}$$

Thus, strength of NaOH =
$$0.06 \times \frac{1000}{25} = 2.4 \text{ g/L}$$

and strength of
$$Na_2CO_3 = 0.106 \times \frac{1000}{25} = 4.24 \text{ g/L}$$

Illustration - 25 8 gm of a mixture of anhydrous Na_2CO_3 and $NaHCO_3$ was dissolved in water and made upto 1000 mL. 25 mL of this solution required for neutralisation:

(a) 32.0 mL of N/10 HCl using methyl orange and (b) 12.0 mL of N/10 HCl using phenolphthalein. Find the strength of NaHCO $_3$ and Na $_3$ CO $_3$.

Solution:

Let mmoles of Na_2CO_3 be x and that of $NaHCO_3$ be y in 25ml sample.

Experiment – I: Meq. of Acid = Meq. of Base (For complete Neutralisation)

$$12 \times \frac{1}{10} = 2 \times x \times \frac{1}{2} + 1 \times y \times 0 \qquad \Longrightarrow \qquad 1.2 = x + 0 \quad \Longrightarrow \quad x = 1.2 \qquad \qquad \dots (i)$$

Experiment – II: Meq. of Acids = Meq. of Base (For complete neutralization)

$$32 \times \frac{1}{10} = 2 \times x + 1 + 1 \times y \times 1 \qquad \Rightarrow \qquad 3.2 = 2x + y \qquad \dots \text{(ii)}$$

Solving (i) and (ii), we get: x = 1.2 and y = 0.8

Thus,
$$x = \frac{g_{\text{Na}_2\text{CO}_3}}{M_{\text{Na}_2\text{CO}_3}} \times 1000 \implies g_{\text{Na}_2\text{CO}_3} = \frac{1.2 \times 106}{1000} = 0.127 \,\text{gm}$$

and
$$y = \frac{g_{\text{NaHCO}_3}}{M_{\text{NaHCO}_3}} \times 1000$$
 \Rightarrow $g_{\text{NaHCO}_3} = \frac{0.8 \times 84}{1000} = 0.0672 \text{ gm}$

Thus, strength of Na₂CO₃ in the sample = $0.127 \times \frac{1000}{25} = 5.28 \text{ gm/L}$

and strength of NaHCO₃ in the sample = $0.0672 \times \frac{1000}{25} = 2.69 \text{ gm/L}$

	IN-CHAPTER EXERCISE-D										
1.	Fill i	Fill in the blanks :									
	(a)		f antacid tablets		-		_		s of gastric juice per day, the HCl produced in one		
	(b)		ity of 1.85 mass required to neu				is 1.025 g cm ⁻³ .	The volum	e of 0.1 M HCl solutions		
	<i>(c)</i>		$I_3 PO_4$ was dilute thalein as indic					10 N - NaO.	H for neutralisation using		
	(d) 1.575 g, of hydrated oxalic acid (COOH) ₂ . nH ₂ O are dissolved in water and the solution is made to 250 ml. titration 16.68 ml of this solution are required for neutralisation of 25 ml of N/15 NaOH. The value of was crystallisation i.e. n is										
	(e) (f)								of N/2 H ₂ SO ₄ ·is acid is		
2.		ml of 2M HCl 100 ml of 2 M H_2SO_4 and one gm equivalent of a monoacidic alkali are mixed together. 30 ml of this fion required 20 ml of 143 gm Na_2CO_3 . xH_2O in one litre solution. Calculate water of crystallisation of Na_2CO_3 . xH_2O .									
3.			of a mixture of a NaCl and Na_2CO_3 were dissolved in water and volume made up to 250 ml. 25 ml of this solution and 50 ml of N/10 HCl for complete neutralisation. Calculate the percentage composition of the original mixture.								
4.	Cho	Choose the correct option:									
	(i) 100 ml solution of 0.1N HCl was titrated with 0.2 N NaOH solutions. The titration was discontinued a adding 30 ml of NaOH solution. The remaining titration was completed by adding 0.25 N KOH solution. The volume of KOH required form completing the titration is:										
	(ii)	The n	ormality of a mi.	xture obtaii	ned by mixing	100 ml of 0.2	MH_2SO_4 with	100 ml of 0	0.2 M NaOH is :		
		(A)	0.05 N	(B)	0.1 N	(C)	0.15 N	(D)	0.2 N		
	(iii)		of x M HCl neuthyl orange end			L of 0.1 M Na	HCO_3 and a fur	ther 5 mL	of 0.2 M Na ₂ CO ₃ solution		
		(A)	0.167 M	(B)	0.133 M	(C)	0.150 M	(D)	0.200 M		
32		Se	ction 4			Self Stu	ıdv Course fo	r IITJEE w	rith Online Support		

Illustration - 26 A mixture containing 1.0 g $CaCO_3$, 0.84 g $NaHCO_3$ and 1.06 g Na_2CO_3 is heated and the products are cooled to 27°C.

- (i) What is the volume of gases produced at $0^{\circ}C$ and 1 atm pressure?
 - $(A) \qquad 224 \ mL$
- (B) 336 mL
- (C) 112 mL
- (D) 448 mL
- (ii) The residue (after heating) is dissolved in water and titrated with $1~\mathrm{M~H_2SO_4}$ solution for complete neutralization. What is the volume of H_2SO_4 consumed?
 - (A) 15 mL
- (B) 25 mL
- (C) 50 mL
- (D) 100 mL

Solution:

(i)-(B)
$$CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$$

mmoles of
$$CaCO_3 = \frac{1}{100} \times 1000 = 10$$

$$\Rightarrow$$
 mmol of CO₂ = mmol of CaO = 10

$$2 \text{NaHCO}_3(s) \xrightarrow{\quad \Delta \quad} \text{Na}_2 \text{CO}_3(s) \ + \ \text{CO}_2(g) \ + \text{H}_2 \text{O} \left(\ell\right)$$

mmoles of NaHCO₃ =
$$\frac{0.84}{84} \times 1000 = 10$$

$$\Rightarrow$$
 mmol of Na₂CO₃ = mmol of CO₂ = 5 (2 mmol NaHCO₃ = 1 mmol each of CO₂ and Na₂CO₃)

$$Na_2CO_3 \xrightarrow{\Delta} does not decompose$$

mmoles of Na₂CO₃ (Present initially in the mixture) =
$$\frac{1.06}{106} \times 1000 = 10$$

Total mmoles of
$$CO_2 = (From CaCO_3 + from NaHCO_3)$$

Total mmoles of
$$CO_2 = 10 + 5 = 15 \implies V_{CO_2}$$
 at $STP = 15 \times 22.4 = 336$ mL

(ii)-(B) Residue contains:

10 mmoles of CaO, 5 mmoles of Na₂CO₃ (Produced from NaHCO₃) and 10 mmoles of Na₂CO₃ (Present initially)

$$\Rightarrow$$
 Total mmoles of Na₂CO₃ = 15

meq of CaO =
$$2 \times 10 = 20$$
; meq of Na₂CO₃ = $2 \times 15 = 30$ (Meq. = n-factor × mmoles)

$$\Rightarrow$$
 meq of H₂SO₄ = meq of base mixture = 50

$$\Rightarrow$$
 1×2×V_{H₂SO₄} = 50 \Rightarrow V_{H₂SO₄} consumed = 25 mL

Illustration - 27 A solution containing 200 ml of 0.5 M BaCl₂ and 400 mL of 0.5 M H₂SO₄ is diluted to 1000 mL.

The volume of 0.1 M Ba(OH), required to neutralized 100 mL of above (diluted) solution is:

- (A) 200 mL
- (B) $2000 \ mL$
- (C) 1000 mL
- (D) 100 mL

Solution: (A)

$$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCl$$

200 ml of 0.5 M BaCl₂
$$\equiv$$
 100 m mole BaCl₂ and 400 ml of 0.5 M H₂SO₄ \equiv 200 m mole H₂SO₄

mmol after the reaction:

$$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCl_100 200-100=100 100 200$$

 H^{+} ions in the solution = from $(H_{2}SO_{4} + HCI) = (2 \times 100) + (1 \times 200) = 400 \text{ mmol}$

Now 400 mmol of H⁺ ions are diluted to 1000 ml.

mmole of H⁺ ions in 100 mL sample =
$$\frac{100}{1000} \times 400 = 40$$

mmoles of H^+ ions = meq of H^+ ions

[Note that magnitude of charge over $H^+ = 1$; meq = 1 × mmol]

- meq of H^+ = meq of $Ba(OH)_2$ for complete neutralisation
- $40 = 2 \times 0.1 \times V \implies V = 200 \text{ mL}$ \Rightarrow

Illustration - 28 A sample of clay contains 12% water which is partially dried and then found to contain (after drying) 40% silica and 7% water. What is the percentage of silica in the original sample?

- 47.5
- **(B)** 38
- **(C)** 40
- **(D)** Cannot be said

SOLUTION: (B)

Let the % of silica be x % in original sample. Let the mass of clay be 100 g in the original sample.

So mass of silica = x gms.

Silica	Water	Impurity
Silied	110001	mp arrej

Mass before drying 12 88 - x(in gms)

Mass after drying 88 - xУ

(in gms)

% of water after drying:

$$\frac{y}{88 + y} \times 100 = 7$$

$$100y = 616 + 7y$$
 $\Rightarrow y = \frac{616}{93} = 6.62 g$

% of silica after drying:

$$\frac{x}{88+6.62} \times 100 = 40$$

$$100x = 3520 + 264.8 \implies x = 37.84 \approx 38$$

Illustration - 29 Which of the following statements is(are) correct?

A mixture containing 64.0g H_2 and 64.0g O_2 is ignited so that water is formed as follows: $2H_2 + O_2 \stackrel{\triangle}{\longrightarrow} 2H_2O$

- H, is the limiting reagent **(A)**
- **(B)** O, is the limiting reagent
- After the completion of reaction, the reaction mixture contains 72.0g of H_2O and 56.0g of unreacted H_2 **(C)**
- After the completion of reaction, the reaction mixture contains 56.0g of H₂O and 72.0g of unreacted H₂ **(D)**

SOLUTION: (BC)

 $64 \text{ g H}_2 \equiv 32 \text{ mole}$; $64 \text{ g O}_2 \equiv 2 \text{ mole}$

$$2H_2 + O_2 \xrightarrow{\Delta} 2H_2O$$

 $2 \text{ mol H}_2 \equiv 1 \text{ mol of } O_2 \implies 2 \text{ moles of } O_2 \text{ require 4 mol of H}_2 \text{ (as per stoichiometry of reaction)}$

Hence O_2 is the limiting reagent as it is consumed completely.

 \Rightarrow 32 - 4 = 28 moles of H₂ are left = 56 gm of H₂

Also 2 moles of O_2 produce 4 mol of $H_2O \equiv 72$ gm of H_2O

Illustration - 30 A mixture of 5.85 gm of NaCl and 12.25 gm of KClO₃ is heated strongly to produce KClO₄ and KCl. The residue is dissolved in excess of $AgNO_3$. The mass of white precipitate formed is:

[Molecular mass of AgCl = 143.5 and $KClO_3 = 122.5$]

(A) 28.7 gm

(B) 1.793 gm

(C) 17.93 gm

(D) 7.175 gm

SOLUTION: (C)

$$5.85 \,\mathrm{g} \,\,\mathrm{NaCl} \equiv 0.1 \,\mathrm{mol} \,\,\mathrm{NaCl}$$
 $12.25 \,\mathrm{g} \,\,\mathrm{KClO}_3 \equiv 0.1 \,\,\mathrm{mol} \,\,\mathrm{KClO}_3$

NaCl $\xrightarrow{\Delta}$ nothing happens

$$4 \text{KClO}_3 \longrightarrow 3 \text{KClO}_4 + \text{KCl} \implies \text{Residue is NaCl, KClO}_4 \text{ and KCl}$$

4 mol KClO₃ ≡ 1 mol KCl
0.1 mol KClO₃ ≡
$$\frac{1}{4}$$
 × 0.1 mol KCl

- AgNO₃ will precipitate out Cl⁻ ions from KCl and NaCl. $[Cl^- + AgNO_3 \rightarrow AgCl \downarrow + NO_3^-]$
- \Rightarrow $\frac{0.1}{4}$ mol KCl $\equiv \frac{0.1}{4}$ mol AgCl and 0.1 mol NaCl $\equiv 0.1$ mol AgCl
- \Rightarrow $n_{\text{AgCl}} = \frac{0.1}{4} + 0.1 = 0.125 \Rightarrow g_{\text{AgCl}} = 0.125 \times 143.5 = 17.93$

Illustration - 31 1.25 gm of a mixture containing $CaCO_3$ and $CaCl_2$ dissolved in 100 ml of H_2SO_4 sol. To this 400 ml of H_2O is added. 50 ml of this solution required 20 ml of 0.05 M solution of a diacidic base. If mixture contained 80% $CaCO_3$ by mass, the molarity of H_2SO_4 solution is:

(A) 1.8

(B) 0.9

 $(\mathbf{C}) = \mathbf{0}$

 (\mathbf{D}) 0.2

SOLUTION: (D)

The resulting solution is acidic and $CaCl_2$ will not react with H_2SO_4 (being neutral salt). Let molarity of H_2SO_4 be x. 50 mL of solution required 20 mL of 0.05 M di-acidic base.

- \Rightarrow meq of excess acid in resulting solution (50 mL) = meq of di-acidic base = $(2 \times 0.05) \times 20 = 2$ Observe that original solution is 500 mL.
- \Rightarrow meq of excess acid in original solution = $\frac{500}{50} \times 2 = 20$

Now initially meq of H_2SO_4 taken = $2 \times x \times 1000 = 200x$

- \Rightarrow meq of H₂SO₄ used against CaCO₃ (only) = 200x 20
- $\Rightarrow 200 x 20 = \text{meq of CaCO}_3 = \frac{g \times 1000}{E_{\text{CaCO}_3}}$

$$g_{CaCO_3} = \frac{80}{100} \times 1.25 = 1$$
; $E_{CaCO_3} = \frac{100}{2}$

- \Rightarrow $(200x 20) = \frac{1}{50} \times 1000$
- \Rightarrow x = 0.2 M